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A COMPARISON OF TWO TECHNIQUES FOR THE
INTERPOLATION/EXTRAPOLATION OF FREQUENCY DOMAIN RESPONSES

Sharath Narayana, Tapan K. Sarkar and Raviraj Adve
Department of Electrical and Computer Engineering
121 Link Hall
Syracuse University
Syracuse, New York 13244-1240

ABSTRACT: In this paper, a comparison is made between two methods which are used
for interpolation/extrapolation of frequency domain responses.

The first is the direct method based on the principle of a model based parameter
estimation and the second method uses the properties of discrete Hilbert transforms based on the

principle of causality.

1. INTRODUCTION

In a host of applications in engineering, it is ne(fessary to obtain information about a
system over a broad range. In most cases, it is not possible to evaluate the parameter of interest
in a closed form. However, either theoretical or experimental data is available in a narrow band.
The first method uses the principle of analytic continuation to extrapolate/interpolate the data
over a wide band. The second method uses the property of Hilbert transform which relates the
real and imaginary components of the frequency domain.

In Section 2, the direct method is studied. Section 3 describes the numerical
implementation of the Hilbert transform. Section 4 describes the algorithm used to implement

this. In Section 5, few numerical examples are studied and comparisons made.




2. THE CAUCHY METHOD
Consider a system function H(s). The objective'is to approximate H(s) by a ratio of two
polynomials A(s) and B(s) so that H(s) can be represented by fewer variables.

Hence, consider

AGs) _ T B M

H(s) «
B(S) ZS=0 bks k

Here, the given information could be the value of the function H(s) and its N; derivatives at some
frequency points s;, j=1, ...J. If H'(s;) represents the n" derivative of H(s) at point s=s;, the
Cauchy problem is:
Given H(")(sj) for n=0, ...N;, j=1, ..J, find P, Q, {a,, k=0, ...P}, and {b,, k=0, ...Q}.

The solution for {a,} and {b,} is unique if the total number of samples is greater than or

equal to the total number of unknown coefficients P - Q + 2 [1], L.e.

J
N=XN+D)=2P+Q+2
§=1

By enforcing the equality in equation (1) one obtains

A(s) = H(s)B(s) . (2)
Differentiating the above equation n times, and evaluating the expressions at point s;,
results in the binomial expansion,

A®(s) = Z°CHOV(s)BOs) 3)
i=0

where,

n!
C =
(n-i)!i!

n! represents the factorial of n.

Using the polynomial expansions for A(s) and B(s), equation (3) can be written as
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where,
k! k-n)
A, = ———'§ uk -n (5)
6ok T Gy 9 M
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B, =32 C H®D (5) uk-i g kD (6)
Gk G (5 ulk ) (k-1)! :
n=0, 1, -..N;, j=1, ...J, where u(k)=0 for k<0 and = 1 otherwise.
Define,
A= [Aq,n),O’ Aq‘n)’l, "‘A(j,n),P] D
B = [B(],n),O’ B(i,n),l’ ...BG’n),Q] 8)
[a] = [ay,a,,3,,...a,]" )
[b] = [by,by,b,,..b,]" (10)
The order of matrix A is N x (P + 1) and that of B is N x (Q + 1). Then, equation
(4) becomes
[Ala = [B]b (11)
or
a v
[A|-B] [b - 0 (12)

For ease of notation, define [C] =[A| - B]. Cisof order Nx (P + Q +2). A Singular Value

Decomposition (SVD) of the matrix C will give us a gauge of the required values of P and Q

[2}. A SVD results in the equation




[UI[Z] [V ; -0 (13)

The matrices U and V are unitary matrices and X is a diagonal matrix with the singular
values of C in descending order as its entries. The columns of U are the left eigenvectors of B
or the eigenvectors of CC". The columns of U are the right eigenvectors of C or the
eigenvectors of C'C. The singular values are the square roots of the eigenvalues of the matrix
CHC. Therefore, the singular values of any matrix are real and positive. The number of nonzero
singular values is the rank of the matrix in equation (12) and so gives us an idea of the
information in this system of simultaneous equations. If R is the number of nonzero singular
values, the dimension of the right null space of C is P+ Q + 2 - R. Our solution vector belongs
to this null space. Hence to make this solution unique, we need to make the dimension of this

null space 1 so that only one vector defines this space. Hence P and Q must satisfy the relation
R+1=P+Q +2 (14)

The solution algorithm must include a method to estimate R. This is done by starting out
with the choices of P and Q that are higher in dimension than can be expected for the system at
hand. Then we get an estimate for R from the number of non-zero singular values of the matrix
C. Now, using equation (14) we get better estimates for P and Q. Letting P and Q stand for
these new estimates of the polynomial orders, we can recalculate the matrices A and B.

Therefore, we come back to the relation

a] ~ o (15)
b

a
al] i3

[C] is a rectangular matrix with more rows than columns. Many methods to solve equation (15)
are well documented [2]. For reasons indicated in the appendix, we choose the method of Total

Least Squares (TLS) [3].

3. TRANSFORM RELATIONSHIPS

This section briefly covers some of the properties of sequences and their Fourier

4




transforms.  Any complex sequence h[n| can be expressed as a sum of a symmetric sequence

h,[n] and an anti-symmetric sequence h,[n]. In the case of real sequences, these are called even

and odd sequences [4]. Therefore,

h[n] = h,[n] + h [n]
h [n] = h[-n]

h[n] = -h [-n]

The Fourier transform of any complex sequence h{n] is represented by H(e¢/®), where

H(e!) = Y hln] eJen

n=-o

Therefore,

He7°) = Y hin] ei"
: =
This implies,
Hg(e!®) = Fh,fn])

and

jHy(e?) = FTh,n])

(16)

17)

(18)

(19)

(20)

21)

(22)

Also, for real h[n], Hgq(e"") = Hy(e7) which is an even function, and Hq(e®®) = -Hq(e7®) which

is an odd function.

3.1.  THE HILBERT TRANSFORM RELATIONSHIP FOR A CAUSAL SEQUENCE

Consider a periodic, real, time domain sequence hp[n] with period N, that is related to a

finite length sequence h[n] of length N by




h [n] = E h[n+iN]

i=-oo

From Eq. (16) we have,

hfn] = h[n] + h[n]

and from Eq. (17) we have

—;-{hp[n] +h p[—n]}

h . [n]

and similarly from Eq. (18),

hygln]

If we have N=2r (where r is a positive integer) then,

r2 n n=1,. —-1
h,,[n] >
_ N
hn] = {hm n=0, 2
0 n=E+1,
| 2

' - N
h,[n] n=1, -
bl ={ 0 n=0,
N
L—hpe[n] n = 3 +1,

If we define u[n] as the periodic sequence

%{hp[n] - hp[—n]} |

(23)

(24)

(25)

(26)

27)

(28)




2 n-1,.5N
2
N
uyn] =¢1 n=0,3
0 n=N.p N-1
{ 2
we can express h[n] as
hy[n] = h[nju,[n]
Equivalently, the Fourier transform of h,[n} yields,
i N-1
HK - }jo HygmlU[k-m] = H o[k] + jH_4[k]
m=

Eq. (29) can be alternatively expressed as,

N N
upN[n] = 2u[n] - 2u[n—3] - 8[n] + 6[n——2—]

where u[n] is the unit step sequence, and 8[n] is the unit sample sequence [10].

The Fourier transform of upnin} is,

kodd

. t[ nk
_2JCO —_
UpN[k] = N

0 k even

with U [0] = N as derived from the definition of Utk
Defining

V& = Upn(k) - N&(k)

we have, from Eq. (31)

(29)

(30)

(1)

(32)

(33)

(34)




N-1
HIK = Hglkd + = Y HgmlV,[k-m] (35)
N m=0,m#k

Hence we get the imaginary part of the Fourier transform as,

N-1 v

. 1

Hald = = Y HygVylkem) (36)
m=0,m#k

This is the Hilbert transform relationship between the real and imaginary parts of the
Fourier transform of a periodically causal sequence. If h{n] = 0 for n < 0 and for n > N/2 then
the periodicity maybe removed and we have the same relationships between the real and

imaginary parts of the Fourier transform of h[n].

I -1

— H.[m]V [k-m] 0 < k < N -1
. _ m=0,m#k R N
jHy[Kk] = {N “m=om

0 otherwise

(37)

In the previous expression the cotangent term is itself periodic with period N, so when
we compute the N point discrete Fourier transform of the real causal time sequence, the
relationship between the real and imaginary parts will be affected. Eq. (37) is the Hilbert
transform relationship between Hy[k] and Hg[k]. Thus with a knowledge of one the other can
be evalu_ated. Alternatively, since h,[n] is the inverse Fourier transform of Hg[k], it can be
obtained by an Inverse Discrete Fourier transform (IDFT) of Hqlk]. Eq. (28) expresses a
relationship between h [n] ‘and h,[n], thus h[n] is known. Hg[k] can be obtained as the Fourier
transform h_[n], by utilizing a discrete Fourier transform (DFT) algorithm: This procedure forms
the basis of our technique for the extraction of a real, causal time domain response from band-
limited complex frequency domain data. The theoretical development assures us that by

computing the DFT’s and IDFT’s the original real time sequence will not lose its causal nature.

4. INTERPOLATION/EXTRAPOLATION OF FREQUENCY DOMAIN DATA
A technique to extrapolate/interpolate data in the frequency domain utilizing the Hilbert

Transform is described next. Before the algorithm is described, it is useful to know something
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about the available frequency domain data. Assume that we have a complex frequency domain

data between frequencies f; and f,. Consider a missing band between f, and f,. The frequency

domain data is sampled at (n,-n,) frequency points between f, and f,, and at (n,-n,) points

between f, and f;. This is expressed as a vector

Hn;:n]) =[H, ... H,,0...0, H, ... H ] (38)

It is now our objective to interpolate this missing data between n,,, and n, ,.

1.

The available bandlimited frequency domain data is padded with zeros to ensure
a length of n points where n is given by N/2 + 1, and N is [2, 4, §, ..., 1024,
2048, ...], providing a sequence of even length. The complex data is now given
by

H[1:n]=H[1:N/2+1]=[0, 0,...,H..,..,H..,0, 0,...,0, ,...H ,,0,0,..0 (39)
] i 3 nd

This complex sequence is copied to obtain a complex consequence of length N.

This is done by flipping the complex conjugate of the sequence and appending to the

given sequence.

H[1:N] = [H[1:N/2 +1], H*[N/2:2]] (40)
The cbmplex sequence is now split into its real and imaginary parts.

H, - Real [H] (41)

H, = Imag [H] (42)

An inverse discrete Fourier transform of Hyg results in an even sequence as stated

earlier.
h(1:N) = Real [TFFT(H)] (43)

This is in fact the even part of the actual time domain sequence.
Before proceeding further, it is important to know that there are sharp

discontinuities in the frequency domain signal. In order to deal with this situation,

9




we will have to multiply the time domain sequence with a window.

The Hanning window of length N is multiplied with the time domain sequence.
The resulting frequency domain sequence will now be "smeared" or smoothed out [10].

The Hanning window is given by

W) = .5 - 0.5 cos2nn)/N Osn<N (44)
0 otherwise
Hence,
h,(1:N) = h (1:N) * W(1:N) (45)
6. The odd sequence is obtained from the even sequence by making use of Eq. (28).
We have
h,(1:N) = [0 h(2:N/2) 0 - h(N/2+2:N)] (46)
7. The discrete Fourier transform of this odd sequence will give the imaginary part
of the spectrum as stated earlier. |
H™ = Imag[FFT(h,)] G
8. . A substitution for the missing points is made in the imaginary part of the original

sequence using the sequence obtained in step (7).

B = [H™(m, -1, Hy(opm,), HY™ (o, 1omy- 1), By, HE™ (o, N2+ 1) (49)

9. This sequence is copied to obtain a sequence of length N.
H™ = (B (N2 1), -H; P IN2:2] (49)

which is an improved version of the original sequence H;.
10.  The inverse discrete Fourier transform of this sequence will give us the odd

sequence again.

10




11.

12.

13.

14.

15.

16.
17.

ho™ = IFFT[j +H;*| (50)

Again using Eqn. (9), we get the modified version of h,.

B2 = [h(1), h2™(2:0/2), B(NJ2+1), ~hX(N2+2:N) 6D

The discrete Fourier transform of this sequence obtained in the previous step will

give us the Real part of the spectrum as stated earlier.
HZ = Real [FFr(h:°W)] (52)

A substitution for the missing points is made in the Real part of the original

sequence using the sequence obtained in step (12).

Sub

Hg"[Hz (1, -1), Hg(@;:ny), Hy ™ (n, + Iiny -1), Hy(ngn) HR ™, + N2 +1)] - 53)

This sequence is copied to obtain a sequence of length N.
Hp™ = [Hp [1:N/2+1], Hg"[N/2:2]] (54)

which is an improved version of the original sequence H,.
The resulting sequence is subject to an inverse discrete Fourier transform to obtain

the even sequence.

h(1:N) = Real[IFFr(H,i“"s)] (55)

As in step 5, this time domain sequence is multiplied with the Hanning window.
Subsequent signal processing are iterations of steps 6 through 16.

The above procedure will interpolate the missing band of frequencies. The reconstructed

sequence will now be the complex sequence given by

HR*[1:n,] = Hg"*[I:n,] + jH™[1:n,] (56)

comparing with Eqn. (38)




Rec Rec
HR[1n,] = [H . Hyeoo s Hogop oo Hyg oy Hyg o Hyy 57

It is worthwhile to note that by making use of the Hanning window, although we have overcome
the difficulties due to discontinuities at the ends of the missing band, we might suffer a loss of
resolution. This is not a serious problem and its effects can be minimized as shown in the
numerical examples.

Subsequent sections illustrate this technique.

5. NUMERICAL RESULTS

Let us first consider the frequency domain data of a microstrip filter measured using the
HP 8510B Network Analyzer. The device is a bandpass filter and its characteristics are measured
at 415 points from 4.31 GHz to 7.415GHz. Our objective now is to compare the performance
of the two methods (The Cauchy method and the iterative technique based on the Hilbert
transform) as the number of missing points are gradually increased. These missing points are
created by deleting portions of the measured data.

Figure 1a shows the real and imaginary parts of the original data. Let us now discard 40
points (which is about 10% of the data) from 200-240. Figures 1b shows this deleted band of
data. This data is now given as input to the direct method. The entire data set is not required
for this method. Only a few points before and after the missing band is sufficient. The program
returns the interpolated data. Next, this data is given as input to the iterative method utilizing
the iterative technique based on the Hilbert transform presented in Section 4. The missing points
are zero padded. Figure lc compares the output of both methods with the original real part,
while Figure 1d compares the corresponding imaginary part. Clearly the reconstruction is quite
accurate using either techniques.

Next, the number of dcleted points was increased to 60, ie., points 200-260 were
discarded. The same procedure was repeated. Figure 2a shows the truncated .data. Figure 2b
shows the reconstructed real part and Figure 2c shows the reconstructed imaginary part of the
response utilizing both the techniques. It is clear from these figures that the reconstruction

obtained using the iterative method based on Hilbert transform is slightly better than that obtained

12




using the direct method. Note that the amplitude of the reconstructed part using the Cauchy
method came out slightly higher> than the actual amplitude.

When the number of deleted points was increased to 80 [about 20% of the data has been
deleted from the middle of the band], i.e., from 200-280, the iterative method agz{in proved to
be better than the direct method. But this time, a slight rhodificati()n was made in the initial
guess for the missing points in the iterative method. A straight line extrapolation between the
ends of the missing band was made in the initial guess instead of zero-padding it. Figure 3a
shows the original data with the initial guess. Figures 3b and 3c are the reconstructed real and
imaginary parts using both methods. Clearly the iterative method gave better results. But it
should be noted that a better interpolation can be got by the Cauchy method if the cut-off for the
singular values, (explained earlier in the theory) is chosen appropriately. Figures 3d and 3e show
the improved result. The singular value cut-off was changed to 1.*' from the previous value of

le'®

However, determining the cut-off for the singular values in practical situations may not
be possible!

As the next example, we consider the frequency domain data of another microstrip
bandpass filter measured at 468 points from 4.206875 GHz to 8.00125 GHz. This data was
incomplete. That is, the entire data set was not considered as can be seen in Figure 4a, where
the response in the stop band is not near zero. Due to this reason, the initial guess had to be
made as the straight line extrapolation explained earlier.

Figure 4a shows the real and imaginary parts of the original data. Again we discard 40
points from 200-240 as shown in Figure 4b. Since the missing band was quite small,
interpolation results using both techniques were similar. Figure 4c shows the reconstructed real
parts compared with the original real part and Figure 4d shows the corresponding imaginary part.

Next, 60 points were discarded from 200-260. Now, knowing that the data itself is
incomplete (explained earlier) and the missing band is large, modification in the initial guess was
made in the iterative method. The initial guess was again the straight line extrapolation between
the ends of the missing band. Figure 5a shows the original data with the initial guess. Figures
5b and Sc now show the reconstructed real and imaginary parts using both techniques. The
results came out to be quite similar. Note that modifications in the iterative method can be made

just by observing the given data and assessing the amount of information provided.
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Finally, 80 points from 200-280 were considered missing. This meant that the
interpolation was to be carried out for a very large missing band considering that the data itself
was incomplete. Figure 6a shows the missing band and the straight line initial guess for the
iterative method.

Figures 6b and 6¢ show the reconstructed real and imaginary parts compared with the
original real and imaginary parts. Note that the Cauchy method gave better results. The
limitation for the iterative technique based on the Hilbert transform was that the given data itself
was incomplete to get better results. So if the data set is incomplete and the missing band data
is to be interpolated/extrapolated then the Cauchy method provides slightly better performance

than the iterative method based on the Hilbert Transform.

6. CONCLUSION

Both the direct methods utilizing analytic continuation and the iterative method using
properties of the Hilbert Transform are very efficient tools for interpolation or extrapolation of
frequency domain responses. The above examples demonstrate the implementation of the two

different algorithms and compares the performance of each method.
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Figure Captions

I(a) Original Data (415 points).
“1(b) Data with 40 missing points.

1(c) Comparison of the reconstruction using the two methods (Real Part).

» 1(d) Comparison of the rec‘()nstruction using the two methods (Imaginary Part).

2(a) Data with 60 missing points.

2(b)  Comparison of the reconstruction using the two methods (Real Part).

2(c) Comparison of the reconstruction using the two methods (Imaginary Part).
3(a) Data with 80 missing points and Non-zero initial guess.

3(b) Comparison of the reconstruction using the two methods (Real Part). Cutoff in Cauchy
107,

3(c) Comparison of the reconstruction using the two methods (Imaginary Part). Cutoff in
Cauchy 10",

3(d) Comparison of the reconstruction using the two methods (Real Part). Cutoff in Cauchy
1072,

3(e) Comparison of the reconstruction using the two methods (Imaginary Part). Cutoff in
Cauchy 107"

4(a)  Original Data (468 points).

4(b) Truncated Data with Initial Guess (40 missing points).

4(c) Comparison of the reconstruction using the two methods (Real Part).

5(a) Truncated Data with Initial Guess (60 missing points).

5(b) Comparison of the reconstruction using the two methods (Real Part).
5(c) Comparison of the reconstruction using the two methods (Imaginary Part).
6(a) Truncated Data with Initial Guess (60 missing points).

6(b) Comparison of the reconstruction using the two methods (Real Part).

6(c) Comparison of the reconstruction using the two methods (Imaginary Part).
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RECONSTRUCTED REAL PART
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Figure 1(c) Comparision of the reconstruction using the two methods (Real Part)
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Figure 1(d) Comparision of the reconstruction using the two methods (Imaginary Part)

19



TRUNCATED DATA ~
0.8 T T T T T T T T

——— REAL PART
... IMAG PART

] 1 ! 1 | 1 i
50 100 150 200 250 300 350 400 450

Figure 2(a) Data with 60 missing points
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Figure 2(b) Comparision of the reconstruction using the two methods (Real Part)
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Figure 2(c) Comparision of the reconstruction using the two methods (Imaginary Part)
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Figure 3(a) Data with 80 missing points and Non-zero initial guess.
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Figure 3(b) Comparision of the reconstruction using the two methods (Real Part) Cutoff in
Cauchy 1016
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Figure 3(c) Comparision of the reconstruction using the two methods (Imaginary Part) Cutoff
in Cauchy 10716
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Figure 3(d) Comparision of the reconstruction using the two methods (Real Part) Cutoff in
Cauchy 102!
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Figure 3(e) Comparision of the reconstruction using the two methods (Imaginary Part) Cutoff
in Cauchy 1021
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Figure 4(a) Original Data (468 points)
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Figure 4(b) Truncated Data with Initial Guess (40 missing points)
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Figure 4(c) Comparision of the reconstruction using the two methods (Real Part)
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Figure 5(a) Truncated Data with Initial Guess (60 missing points)

’ ) .
o




RECONSTRUCTED REAL PART

1 I T I I I T i [ T

0.8F ——— ORIGINAL A~ ]
... HILBERT :
06 — — CAUCHY il

-“'0,8 1 i 1 ! | H ! i |
0 50 100 150 200 250 300 350 400 450 500

Figure 5(b) Comparision of the reconstruction using the two methods (Real Part)
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Figure 5(c) Comparision of the reconstruction using the two methods (Imaginary Part)
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Figure 6(a) Truncated Data with Initial Guess (60 missing points)
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Figure 6(b) Comparision of the reconstruction using the two methods (Real Part)
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Figure 6(c) Comparision of the reconstruction using the two
methods (Imaginary Part)
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